Correlating photoacidity to hydrogen-bond structure by using the local O-H stretching probe in hydrogen-bonded complexes of aromatic alcohols.

نویسندگان

  • Brian T Psciuk
  • Mirabelle Prémont-Schwarz
  • Benjamin Koeppe
  • Sharon Keinan
  • Dequan Xiao
  • Erik T J Nibbering
  • Victor S Batista
چکیده

To assess the potential use of O-H stretching modes of aromatic alcohols as ultrafast local probes of transient structures and photoacidity, we analyze the response of the O-H stretching mode in the 2-naphthol-acetonitrile (2N-CH3CN) 1:1 complex after UV photoexcitation. We combine femtosecond UV-infrared pump-probe spectroscopy and a theoretical treatment of vibrational solvatochromic effects based on the Pullin perturbative approach, parametrized at the density functional theory (DFT) level. We analyze the effect of hydrogen bonding on the vibrational properties of the photoacid-base complex in the S0 state, as compared to O-H stretching vibrations in a wide range of substituted phenols and naphthols covering the 3000-3650 cm(-1) frequency range. Ground state vibrational properties of these phenols and naphthols with various substituent functional groups are analyzed in solvents of different polarity and compared to the vibrational frequency shift of 2N induced by UV photoexcitation to the (1)Lb electronic excited state. We find that the O-H stretching frequency shifts follow a linear relationship with the solvent polarity function F0 = (2ε0 - 2)/(2ε0 + 1), where ε0 is the static dielectric constant of the solvent. These changes are directly correlated with photoacidity trends determined by reported pKa values and with structural changes in the O···N and O-H hydrogen-bond distances induced by solvation or photoexcitation of the hydrogen-bonded complexes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High-Level Quantum Chemical Calculations of Ozone-Water Complexes

The structural and energetic characteristics of O3–H2O complexes have been investigated by means of B3LYP, MP2, MP4(SDTQ), CCSD(T) and QCISD(T) methods in conjunction with the AUG-cc-pVDZ and AUG-cc-pVTZ basis sets. Six conformers were found for the O3–H2O complex. Two different intermolecular interactions were expected to participate in the formation of complexes, namely conventional O∙∙∙H hyd...

متن کامل

Theoretical Investigation of Interaction between 5-Fluorouracil Anticancer Drug with Various Nitrosamine Compounds

We present detailed theoretical studies of the H-bonded complexes formed from interaction between 5-fluorouracil and various six-membered cyclic nitrosamine compounds. In this study, an investigation on intermolecular interactions in X-NU (X = CH2, SiH2,BH, AlH, NH, PH, O and S) complexes is carried out using density functional theory. The calculations are conducted on B3L...

متن کامل

Ab Initio Quantum Chemical Studies of 15N and 13C NMR Shielding Tensors in Serine and Complexes of Serine- nH2O: Investigation on Strength of the CαH…O Hydrogen bonding in the Amino Acid Residue.

In this paper, the hydrogen bonding (HB) effects on the NMR chemical shifts of selected atoms in serineand serine-nH2O complexes (from one to ten water molecules) have been investigated with quantummechanical calculations of the 15N and 13C tensors. Interaction with water molecules causes importantchanges in geometry and electronic structure of serine.For the compound studied, the most importan...

متن کامل

A Comprehensive Analysis of Hydrogen Bond Interactions Based on Local Vibrational Modes

Local stretching modes for 69 different DH single bonds and 58 H· · ·A H-bonds are calculated at the ωB97X-D/aug-cc-pVTZ level of theory to describe the changes in donor D and acceptor A upon forming the hydrogen-bonded complex. The intrinsic strength of the DH and AH interactions is determined utilizing the properties of a well-defined set of local, uncoupled vibrational modes. The local mode ...

متن کامل

Interactions between the chloride anion and aromatic molecules: infrared spectra of the Cl- -C6H5CH3, Cl- -C6H5NH2 and Cl- -C6H5OH complexes.

The Cl- -C6H5CH3*Ar, Cl- -C6H5NH2*Ar, and Cl- -C6H5OH*Ar anion complexes are investigated using infrared photodissociation spectroscopy and ab initio calculations at the MP2/aug-cc-pVDZ level. The results indicate that for Cl- -C6H5NH2 and Cl- -C6H5OH, the Cl- anion is attached to the substituent group by a single near-linear hydrogen bond. For Cl--C6H5CH3, the Cl- is attached to an ortho-hydro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry. A

دوره 119 20  شماره 

صفحات  -

تاریخ انتشار 2015